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 RPE65 (retinal pigment epithelium-specific 65 kDa pro-
tein) is the isomerohydrolase of the visual (retinoid) cycle [1-
3], the pathway that regenerates visual pigment after light is
absorbed [4]. Mutations in the RPE65 gene are known to cause
Leber congenital amaurosis (LCA), a severe early-onset blind-
ing human disease [5,6]. Longstanding scientific interest in
details of the visual cycle, the availability of naturally-occur-
ring and genetically-engineered animals with RPE65 defi-
ciency, and relevance to human blindness has accelerated sci-
entific and medical activity toward initiating gene therapy clini-
cal trials in RPE65-LCA. Systematic steps have been taken
toward human trials. Proof-of-concept studies with viral gene
transfer of RPE65 have occurred in dogs [7-11], and in mice
[12-17]. Dose-response and safety studies have been performed
in dogs and non-human primates [18,19]. Human studies have
inquired whether the successfully-treated animals with RPE65

deficiency sufficiently model the human disease to warrant
translation to the clinic [20], and what outcome measures
would accommodate the severe visual loss and nystagmus in
the RPE65-LCA patients [21-23].

The steady progress toward early-phase human clinical
trials of RPE65-LCA prompted us to begin considering the
needs of later-phase trials. One such need will be an analyti-
cal method to determine whether the clinical grade gene
therapy agent is biologically active [24,25]. Building upon the
foundation of studies to date, we chose to explore an in vivo
assay of biologic activity using a surrogate measure of gene
expression in an available murine model with Rpe65 defi-
ciency. The measurement tool is the electroretinogram (ERG),
the time-honored non-invasive retinal function test used in the
clinic [26,27], in the laboratory to determine retinal pheno-
type in mice [28-30], and in proof-of-concept studies of vec-
tor-mediated gene therapy in Rpe65-deficient mice [12-17].

First, we defined the ERG abnormality of the naturally-
occurring rd12 mouse model of Rpe65 deficiency [12-17,31-
38]. Then, we quantified ERG parameters at different doses
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of AAV2 vector containing human RPE65 cDNA delivered
by subretinal injection [18,19]. The results lead to suggestions
for bioassays of clinical grade vector for future late-phase clini-
cal trials of RPE65-LCA.

METHODS
Animals:  Rd12 (N=39; 16 female and 23 male) and normal
wildtype (wt, N=10; 1 female; 9 male) C57BL/6J mice were
used in this study. Mice were generated from breeding pairs
obtained from the Jackson Laboratories (Bar Harbor, ME) and
were 2 to 4 mo of age at the time of testing. Animals were
kept in cages (average 2-3 animals per cage) under 12 h-on/
12-h-off cyclic lighting (ambient illumination 75 lx), with lights
on at 7 am. Access to food (LM-485, Harlan Teklad, Madison,
WI) and water was ad libitum. Procedures were conducted in
accordance with the ARVO Statement for the Use of Animals
in Ophthalmic and Visual Research and with institutional ap-
proval.

Electroretinography:  Full field bilateral ERGs were re-
corded using a custom-built ganzfeld, a computer-based sys-
tem (EPIC-XL, LKC Technologies, Gaithersburg, MD) and
specially-made contact lens electrodes (Hansen Ophthalmics,
Iowa City, IA). Animals were dark-adapted (>12 h) and anes-
thetized with a mixture of ketamine HCl (65 mg/kg) and
xylazine (5 mg/kg) intramuscularly under dim red light. Cor-
neas were anesthesized with proparacaine HCl, and pupils were
dilated with tropicamide (1%) and phenylephrine (2.5%).
Medium energy (10 µs duration) and high energy (1 ms dura-
tion) flash stimulators with unattenuated luminances of 0.8
and 3.6 log scot-cd.s.m-2, respectively, were used. Neutral den-
sity (Wratten 96) and blue (Wratten 47A) filters served to at-
tenuate and spectrally-shape the stimuli. The signals evoked
by medium energy flashes were amplified, filtered (-3 dB cut-
off at 0.3 and 300 Hz) and digitized (2 kHz) with an 12-bit
analog-to-digital converter. Signals evoked by higher energy
flashes were recorded with higher bandwidth (1500 Hz filter-
ing and 3.33 kHz sampling).

First, dark-adapted ERGs were obtained with increasing
intensities of blue light flashes from -4.2 to 0.1 log scot-cd.s.m-

2. Dimmer intensities were presented at 0.5 Hz and 10 wave-
forms were averaged; brighter intensities were presented at
0.1 Hz and 2 waveforms were averaged. Intensity increments
were in 0.3-0.5 log unit steps. Next, an ERG photoresponse
was evoked with a single blue 2.2 log scot-cd.s.m-2 flash. A 2-
min wait served to permit complete recovery of the
photoresponse. Then a single white 3.6 log scot-cd.s.m-2 flash
was used to evoke the maximal photoresponse.

B-wave amplitudes were measured conventionally, from
baseline or a-wave trough to positive peak, and fit with a Naka-
Rushton function [39,40] to obtain estimates of maximum
amplitude (V

max
) and sensitivity (semisaturation intensity, log

K). A derived parameter, log(V
max

/K), was used to succinctly
represent overall post-receptoral function. Leading edges (4
to 20 ms, depending on the response) of the two photoresponses
were fitted as an ensemble with a model of rod
phototransduction activation [12,32,39,41] and maximum
amplitude (R

max
) and sensitivity (log S) parameters were de-

rived. A derived parameter, log(R
max

*S), was used to repre-
sent overall photoreceptor function.

Efficacy of the treatment was statistically evaluated con-
sidering the derived ERG parameters, log(R

max
*S) and

log(V
max

/K), in injected and control eyes. A one-way analysis
of variance (ANOVA) with repeated measures was employed
to adjust for the possible correlation between the eyes of each
animal. When the overall difference among 5 groups of eyes
was statistically significant, post-hoc pair-wise comparisons
were performed between injected eyes at each dose level with
control eyes. Additionally, test of linear trend was performed
for each variable. Computations were executed on the statisti-
cal software SAS (version 9.1, SAS Institute, Inc., Cary, NC).

Efficacy of the treatment was alternatively evaluated by
estimating the fraction of injected eyes (at each dose) that show
an ERG parameter substantially better than what would be
expected from uninjected eyes. The four ERG parameters (R

max
,

log S, V
max

, and log K) were individually evaluated using a
conservative criterion of mean±3SD derived from control eyes
[9]. Additionally, a parameter consisting of the interocular dif-
ference (IOD) of b-wave amplitude evoked by a 0.1 log scot-
cd.s.m-2 blue flash was considered as a simpler and shorter
methodology for a potential bioassay. For this analysis, IOD
limits (mean+3SD) were first defined for smaller amplitude
rd12 records (21 µV IOD at a mean amplitude of 16 µV) and
larger amplitude wt records (284 µV IOD at a mean ampli-
tude of 356 µV) in animals with bilateral ERG recordings and
no treatment. Treatment efficacy in the injected rd12 eyes was
determined using a criterion that was dependent on the ampli-
tude of the uninjected eye and was derived from the linear
interpolation of IOD limits between the rd12 and wt results.

Vector and injection:  A single 1 µl subretinal injection of
a serotype 2 AAV vector containing the human RPE65 cDNA
(rAAV2-CBSB-hRPE65) was delivered to one eye (N=34) of
rd12 mice at an average age of 3.3 weeks (range, 2 to 5.3).
The construct and dosage of vector was based on previous
studies [18,19]. Four vector doses were studied over a two log
unit range: 0.01X (N=5), 0.1X (N=10), 0.3X (N=11) and 1X
(N=8) where 1X corresponded to 1010 vg/ µl. The remaining
five rd12 mice were not treated. All uninjected rd12 eyes
(N=44) served as controls.

RESULTS
Rpe65-deficient rd12 mouse electroretinography parameters:
Waveforms recorded to increasing intensities of light stimuli
from two-month-old normal wt (left) and rd12 (right) mice
are illustrated (Figure 1A). ERG b-waves of the rd12 mouse
were not detectable below an intensity of -0.8 log scot-cd.s.m-

2, but intensities at and above 0.1 log scot-cd.s.m-2 can evoke
recordable and sometimes sizeable responses. Of note, there
were small and slow but detectable a-waves in mutant eyes at
higher intensities [32]. Leading edges of these a-waves evoked
by 2.2 and 3.6 log scot-cd.s.m-2 intensities directly assess pho-
toreceptor activation kinetics and were fit with a model of
phototransduction activation (Figure 1B). Compared to wt,
rd12 mice showed a-waves (also called ERG photoresponses)
with a significant reduction of maximum amplitude and slower
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Figure 1. Definition of electroretinography abnormalities in the rd12 mouse model of RPE65-LCA.  A: Dark adapted ERGs to increasing
stimulus intensities (shown to the left of key traces) for representative 2-month-old wt and rd12 mice. Blue flashes were used for all intensities
except the highest, which were evoked by white flashes. Traces start at stimulus onset. B: ERG photoresponses (symbols) evoked by 3.6 and
2.2 log scot-cd.s.m-2 flashes are fit as an ensemble with a model of phototransduction (smooth lines). The response from the mutant shows
reduced amplitude and sensitivity. C: Summary statistics of maximum amplitude (R

max
) and sensitivity (log S) parameters obtained from

photoresponse modeling in rd12 mice are significantly (*) different than wt. D: Luminance-response functions derived from ERG b-wave
series show diminished light sensitivity in mutant animals indicated by a shift to the right of the curves. Mutant animals also show a reduction
in maximum amplitude. Error bars equals to 1SD.
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Figure 2. Electroretinography parameters of rd12 mice to different doses of subretinal AAV2-hRPE65.  A: ERGs evoked by 0.1 log scot-
cd.s.m-2 flashes (upper row) and by 3.6 log scot-cd.m.s-2 flashes (lower row) in treated (colors) and untreated (gray) eyes of one rd12 mouse
from each dose group. As vector dose increases, responses become asymmetric with treated retinas showing increasing amplitude of b-waves
and faster photoresponses. Photoreceptor activation models (smooth lines) fit to the photoresponses are shown. All traces start at stimulus
onset. B: Photoresponse parameters in rd12 eyes treated with a range of vector doses. As dosage increases above 0.01X, parameter pairs drift
outside of the 99% confidence region (dashed ellipse) defined by the untreated eyes of rd12 animals and start approaching wt levels. C:
Luminance response parameters in treated rd12 eyes similarly show a dose-related progression from the region corresponding to untreated
eyes to the region corresponding to wt eyes.

response kinetics. The prominent retinal function abnormali-
ties were consistent with previous reports in rd12 [14,17,37,38]
and Rpe65-/- mice [12,13,31-36].

A summary of the phototransduction activation param-
eters, maximum amplitude (R

max
) and sensitivity (log S), ob-

tained by modeling of the leading edges of the ERG
photoresponses is shown (Figure 1C). Mean (±SD) R

max
 was

320 (±94) µV for wt and 40 (±15) µV for rd12; log S values
were 3.62 (±0.36) and 1.32 (±0.27) log scot-cd-1.m2.s-3 for wt
and rd12, respectively (p<0.001 for both). Overall photore-
ceptor function as estimated by log(R

max
*S) was significantly

depressed by 3.2 log units in rd12 mice compared to wt.
Dark-adapted ERG b-waves originate primarily from the

activity of bipolar cells driven by photoreceptor cells [42,43].
Luminance-response functions obtained from ERG b-wave
series can thus parameterize the post-receptoral function to a

good first approximation [39]. Even though b-wave ampli-
tudes in some rd12 mice could be sizeable at the higher inten-
sity stimuli (Figure 1A), there were significant differences
between rd12 and wt mice (Figure 1D). Average b-wave lu-
minance-response function fit with a Naka-Rushton equation
(Figure 1D, gray lines) was significantly right-shifted in rd12
compared to wt mice. Log K values were -1.45±0.43 and
1.86±0.38 log scot-cd.s.m-2, for wt and rd12, respectively, cor-
responding to a 3.3 log unit loss of light sensitivity due to the
Rpe65 deficiency (Figure 1D). V

max
 was 518±176 µV in wt

and 137±42 µV in rd12. Rd12 mice showed pronounced im-
pairment of overall post-receptoral function as estimated by
log(V

max
/K) showing a 3.8 log unit difference from wt.

Dose-response functions in rd12 mice with subretinal in-
jections of human grade AAV2-RPE65 vector: Representative
rd12 mice evaluated 6.5 (range, 5.3 to 7.6) weeks after treat-
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TABLE 1. COMPARISON OF ERG MEASURES AMONG DIFFERENT DOSE LEVELS

                                        Dose
                          ---------------------------------
ERG measure     Control   0.01X    0.1X     0.3X     1X       Overall   Linear trend
                (N=44)    (N=5)    (N=10)   (N=11)   (N=8)    p-value     p-value
-------------   -------   ------   ------   ------   ------   -------   ------------
Photoreceptor   2.89      2.92     3.56*    4.64**   4.93**   <0.0001   0.0002
                (0.04)    (0.18)   (0.29)   (0.17)   (0.36)
Postreceptor    0.34      0.49     0.98**   2.02**   3.08**   0.0003    0.0003
                (0.06)    (0.21)   (0.19)   (0.28)   (0.47)

The table includes mean (std.error) values for photoreceptor- and postreceptor-based ERG measures in each of the five groups of eyes as well
as showing the statistical significance of the overall differences and linear trend. Photoreceptor measure corresponds to log(R

max
*S) parameter

derived from ERG photoresponses and it is specified in units of log µV. scot-cd-1.m2.s-3. Postreceptor measure corresponds to log(V
max

/K)
parameter derived from ERG luminance response functions and it is specified in units of log µV. scot-cd-1.m2.s-1. One-way ANOVA with
repeated measures was used to evaluate overall differences which were highly significant. Both ERG parameters show a significant linear
trend with dose suggesting a dose response relationship. Pairwise post-hoc comparisons are made between the eyes at each dose level and
control eyes, and significance of the differences specified with asterisk: single asterisk corresponds to 0.01<p<0.05, and double asterisk
corresponds to p<0.01.

ment demonstrate the effect of vector dose on ERG responses
in the AAV2-hRPE65 injected eyes (Figure 2A, colored traces)
as compared to contralateral control eyes (Figure 2A, gray
traces). At the lowest vector dose (0.01X) used in these stud-
ies, b-wave and photoresponse waveforms from the two eyes
were indistinguishable and were not different from untreated
rd12 eyes. At higher doses, however, there were notable asym-
metries between the eyes. Treated eyes had responses with
greater b-wave amplitude and faster photoresponses with larger
amplitudes.

Statistical analysis (one-way ANOVA with repeated mea-
sures) of the overall photoreceptor and post-receptoral ERG
function showed highly significant differences among the
groups of injected and control eyes (p<0.0001 for log(R

max
*S)

and p=0.0003 for log(V
max

/K)). Pairwise post-hoc compari-
son between the eyes at each dose level and control eyes
showed significant improvement in both parameters at 0.1X,
0.3X and 1X (Table 1). Furthermore, there was a statistically
significant dose response relationship for both parameters (P
for linear trend, 0.0002 and 0.0003 for log(R

max
*S) and

log(V
max

/K), respectively).
To understand better the physiologic basis of the treat-

ment effect, photoreceptor activation parameters were com-
pared between treated and untreated rd12 eyes (Figure 2B).
Photoreceptor activation of eyes treated with 0.01X dose (blue
symbols) fell within the 99% confidence interval of untreated
eyes (gray symbols). With increasing treatment dose between
0.1X and 1X, there was a gradual increase in photoresponse
sensitivity (log S) such that some of the 0.3X and 1X eyes
approached values from wt eyes. Additionally, many eyes re-
ceiving the highest doses showed a large increase in maxi-
mum amplitude (Figure 2B).

Post-receptoral function parameters derived from ERG
b-wave series in treated rd12 eyes also showed an orderly re-
lationship with treatment dose (Figure 2C). At 0.01X dose,
both sensitivity (log K) and maximum amplitude (V

max
) pa-

rameters clustered within the 99% confidence interval of val-
ues obtained from untreated eyes. With increasing treatment
dose, there was a gradual increase in log K. A fraction of rd12

eyes treated with the 1X dose showed log K and V
max

 values
approaching those of wt eyes.

Estimating treatment efficacy with electroretinography pa-
rameters:  ERG data from individual treated eyes (Figure
2B,C) suggested that increasing dose was associated with in-
creasing fraction of eyes showing a detectable treatment ef-
fect. To quantify this impression, the proportion of vector-in-
jected eyes with ERG treatment efficacy are shown for each
of the 4 doses tested (Figure 3A,B). A conservative criterion
for efficacy was established from the limits (mean±3SD) of
data from untreated eyes. Both photoresponse and b-wave sen-
sitivity measures (log S and log K) demonstrated similar treat-
ment efficacies, rising from 0% at 0.01X to 88% at 1X dose
(Figure 3A,B). Maximum amplitude measures (R

max
 and V

max
)

on the other hand, showed little or no treatment efficacy at
0.01X, 0.1X and 0.3X doses but did rise to 40%-50% at 1X
dose.

The dose-related increases in ERG sensitivity parameters
suggested the possibility of using ERGs evoked by a flash
carefully chosen to be near b-wave threshold in untreated rd12
eyes. Based on the luminance-response function (Figure 1D),
a stimulus intensity of 0.1 log scot-cd.s.m-2 was chosen. A left-
shift of the luminance-response function due to efficacious
treatment would be expected to increase the amplitude of this
response potentially simplifying and shortening the experi-
mental protocol. ERG b-wave amplitudes of treated eyes were
plotted against untreated eyes and treatment efficacy was de-
fined by expected interocular differences (IOD) of this ampli-
tude in untreated rd12 and wt eyes (Figure 3C). The resulting
treatment efficacy curve (Figure 3D) was similar to that ob-
tained from the log S parameter whether using IOD analysis
(Figure 3D) or considering all untreated eyes as a control group
(Figure 3A). IOD analysis of the other sensitivity parameter,
log K, showed identical results (data not shown).

DISCUSSION
 Naturally-occurring rd12 mice with Rpe65 deficiency showed
ERG b-wave features of severely reduced responsiveness to
light, in concurrence with earlier studies [14,17,37,38]. Novel
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to the current study was the analysis of ERG photoresponses
which are dominated by the phototransduction activation in
photoreceptors [44,45]. Rd12 mice showed substantially re-
duced photoresponse maximum amplitude and sensitivity pa-

rameters; the severity of dysfunction in rd12 mice appeared
to be slightly greater than that reported in Rpe65-/- mice
[12,20,32]. Assuming isorhodopsin is responsible for remnant
rod retinal function in these models [35,46], reduced
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Figure 3. Treatment efficacy as a function of vector dose.  A: Sensitivity (log S) parameter of ERG photoresponses detects efficacy at lower
doses than the maximum amplitude (R

max
) parameter. B: Sensitivity (log K) parameter of b-wave luminance-response function detects efficacy

at lower doses than the maximum amplitude (V
max

) parameter. Both sensitivity parameters predict 50% efficacy near 0.1X dose whereas
maximum amplitude parameters predict 50% efficacy near 1X. C: Comparison of ERG b-wave amplitude evoked by a 0.1 log scot-cd.s.m-2

flash in treated (left) eyes versus untreated (right) eyes. Dashed line represents no inter-ocular difference in this parameter. Upper limit of
significant inter-ocular difference derived from untreated rd12 and wt animals is shown with solid line. D: Treatment efficacy estimated using
the interocular difference (IOD) of b-wave amplitude is similar to the IOD analysis of photoresponse sensitivity (log S) predicting 50%
efficacy near 0.1X dose.
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photoresponse sensivity could imply a difference in endog-
enous 9-cis-retinal production between the two mutant mice
either due to genetic background [46] or due to differences in
laboratory lighting conditions [35]. The differences in maxi-
mum amplitude of the photoresponses in the mutants could be
due to differences in spontaneous activity of opsin or its con-
stitutive phosphorylation [47-49]. Alternatively or addition-
ally, the reduction in photoresponse maximum amplitude could
be caused by a greater underlying degenerative component in
rd12 mice. More rapidly advancing degeneration in a mouse
model may have particular value for testing therapies intended
for translation to man, considering human degeneration in
RPE65-LCA is severe compared to the models [20]. When
we previously sought to determine efficacy in advanced dis-
ease using Rpe65-/- mice, we reared mice to nearly two years
of age [20]. A shorter natural history for severe degeneration
in rd12 mice could facilitate and expedite studies that would
be relevant to more severely affected humans with RPE65-
LCA.

ERG data presentations in most reports of Rpe65-defi-
cient mice illustrate small or non-detectable ERG b-waves to
conventional stimuli [12-14,17,31-38]. With higher intensity
stimuli, however, sizeable ERG b-waves are recordable in both
models. We previously reported relatively large but insensi-
tive photoreceptor responses using higher intensity light stimuli
in Rpe65-/- mice [12,32]. These signals were also observed in
rd12 mice in the current study. On the other hand, detectable
but insensitive ERG photoreceptor responses have not been
reported in human RPE65-LCA to date [32,50-56]. Assuming
the functional reserve in mice is due to endogenous 9-cis-reti-
nal production [35,46], the apparent lack of such signals in
human RPE65-LCA may point to differences in systemic and/
or ocular retinoid metabolism between the two species [57].

A relationship between dose and treatment efficacy for
AAV2-hRPE65 vector has previously been reported only in
the RPE65 mutant dog [18]. In those experiments, two con-
ventional ERG stimuli were used and b-waves were quanti-
fied at 8 levels of vector doses in 16 dogs. Of interest, 3 of
these dogs were tested with the same human vector (at rela-
tive doses 0.1X, 0.3X and 1X) used in the present rd12 mouse
study. Results of the ERG experiments in the rd12 mice con-
firm and extend the dog studies. Like the canine results, the
mice showed dose-dependent improvement in ERG: 0.01X
dose was ineffective whereas doses over the range of 0.1X to
1X showed an increasingly larger proportion of injected eyes
with a statistically significant treatment effect.

ERG photoresponses provide a non-invasive estimate of
the photoreceptor circulating current averaged across the retina
[39,41,44,45]. The photoresponse sensitivity parameter assays
the amplification gain of the photoreceptors and, all else be-
ing equal, it tracks changes in rhodopsin concentration [58].
Thus, increased photoresponse sensitivity (log S) following
successful treatment, as observed in the current work, would
have been the predictable consequence of increased rhodop-
sin production [12]. Improvements in photoresponse maxi-
mum amplitude observed at higher doses, on the other hand,

may have more complex origins including increases in dark
current due to reduction of the concentration of unliganded
opsin causing spontaneous activation of phototransduction
[32,34,49] and elongation of photoreceptor outer segments.
Evidence to date suggests that both types of improvement in
rod photoreceptor function are not only transmitted to sec-
ondary retinal neurons, as evidenced by b-waves, but also to
higher visual centers [7,11,14,21,38,59].

Laboratory progress of ocular gene therapy in treating
Rpe65 deficiency is now sufficient to begin developing ana-
lytical methods for products intended for human RPE65-LCA
clinical trials [25]. We are unaware of any established potency
assays for this specific purpose, so we started to fill this void
by using a naturally-occurring animal model of the human
disease, subretinal gene delivery, different doses of human
grade vector product and an ERG assay for activity of the ex-
pressed gene. The ERG results are promising at this initial
stage, but further work is needed. Variations in ERG respond-
ing to different doses of vector, for example, should be ad-
dressed. This is not a trivial issue because of the difficulties
associated with subretinal injections in these small eyes, in-
cluding uncertainty of degree of retinal detachment, amount
of transduced RPE and the confounding effects of potential
vector toxicity or retinal injury during this type of surgery.
Vehicle only or sham controls would be worth performing in
subsequent studies with the goal of teasing apart the contribu-
tions of retinal injury and degree of retinal detachment, for
example, from degree of vector potency or vector toxicity in
eyes with this retinal disease. With further advances of this
bioassay, experiments should be conducted to quantify retinal
detachment at surgery and determine the relation to retinal
injury and amount of transduced RPE.

Biologic assays, and particularly in vivo ones, are recog-
nized to be challenging [25]. Parallel exploration of other di-
rections is thus warranted. For example, in vitro cell function
assays involving quantitation of retinoid isomerase activity
have been developed to reproduce the visual cycle and ex-
press mutant proteins. Results from these assays have the po-
tential to help understand the pathogenicity of different RPE65
mutations found in LCA [3,60,61]. It may be possible to adapt
such cell systems to act as a surrogate potency assay for hu-
man grade vector, but there will be issues relating to the effi-
ciency of vector transduction of cells in culture versus trans-
duction of RPE in vivo that may complicate this approach. As
another example, assays of biochemical phenotype in an in
vivo experimental paradigm such as we used in the current
work could also be of value. The mouse models are incapable
of synthesizing requisite levels of 11-cis-retinal, the chro-
mophore of visual pigments, and they accumulate retinyl es-
ters, a substrate for Rpe65. Restoration of Rpe65 activity by
AAV-mediated gene therapy reverses these results [4,14,31].
Although any assay of retinal tissue after gene therapy in the
small mouse eye necessarily has the surgical uncertainties
noted above, it may be desirable in the future to validate more
than one in vivo potency assay of the Rpe65-deficient murine
retinal response to therapy.
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